Tensor Generalizations of Affine Symmetry Vectors

نویسندگان

  • Samuel A. Cook
  • Tevian Dray
چکیده

A definition is suggested for affine symmetry tensors, which generalize the notion of affine vectors in the same way that (conformal) Killing tensors generalize (conformal) Killing vectors. An identity for these tensors is proved, which gives the second derivative of the tensor in terms of the curvature tensor, generalizing a well-known identity for affine vectors. Additionally, the definition leads to a good definition of homothetic tensors. The inclusion relations between these types of tensors are exhibited. The relationship between affine symmetry tensors and solutions to the equation of geodesic deviation is clarified, again extending known results about Killing tensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisymmetric tensor generalizations of affine vector fields.

Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely r...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

3-point Functions in Conformal Field Theory with Affine Lie Group Symmetry

Abstract In this paper we develop a general method for constructing 3-point functions in conformal field theory with affine Lie group symmetry, continuing our recent work on 2-point functions. The results are provided in terms of triangular coordinates used in a wave function description of vectors in highest weight modules. In this framework, complicated couplings translate into ordinary produ...

متن کامل

M ar 2 00 3 3 - dimensional affine hypersurfaces admitting a pointwise SO ( 2 ) - or Z 3 - symmetry

3-dimensional affine hypersurfaces admitting a pointwise SO(2)-or Z 3-symmetry Abstract In (equi-)affine differential geometry, the most important algebraic invariants are the affine (Blaschke) metric h, the affine shape operator S and the difference tensor K. A hypersurface is said to admit a point-wise symmetry if at every point there exists a linear transformation preserving the affine metri...

متن کامل

ar X iv : m at h / 02 01 31 3 v 1 [ m at h . R T ] 3 1 Ja n 20 02 To Robert Moody Energy - momentum tensor for the toroidal

Energy-momentum tensor for the toroidal Lie algebras. Abstract. We construct vertex operator representations for the full (N + 1)-toroidal Lie algebra g. We associate with g a toroidal vertex operator algebra, which is a tensor product of an affine VOA, a sub-VOA of a hyperbolic lattice VOA, affine sl N VOA and a twisted Heisenberg-Virasoro VOA. The modules for the toroidal VOA are also modules...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009